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Abscract
A cew mathod for the design of shock-free supercritical airfoils,

wings, and three-dimensional configurations is described. Rasulcs illus-
trating this procedurs in two aad three dimensions are given. They

include modificatioms to part of che upper surface of an NACA 644410 air-
foil chat will maintain shock-free flow over a range of Mach numbers for

a fixed lift coefficient, and the modifications required om part of the
upper surface of a swept wing wich an NACA 644410 root section tc achieve
shock-free flow. While cthe results are given for inviscid flow, the same
procedures can be employed iteratively with 4 boundary lsyer calculation

in order to achieve shock-free viscous designs. With a shock-free pressure
field the boundary layer calculation will be reliable and not complicated

by the difficulcies of shor“-wave boundary-layer interactiom.
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INTRODUCTION

Well-known requirements for increased efficiency, and in the case of
aircraft, productivity, have forced the operating conditions of compres—-
sors, turbines, propellers, wing sections, and aircraft into the transonic
regime. Unfortunately, once local regions of supersonic flow occur, shock
waves are likely with the attendant wave drag, and boundary layer separa-
tion, losses. In the mid-fifties, Morawetz' proved that shock-free, two—
dimensional, irrotacioual, near sonic flows are mathemacically isolated.
In other words, any small changes in the flow or boundary conditions that
provide a shock-free flow will lead to the formation of & shock wave. Thus
Morawetz's theorem stated that the shock-free inviscid flow solutions, if
and when they existed, were isclated by neighboring solutions that contain
shock waves. Recently this result has been extended to three dimensions
by Cook.z Fortunately, it was recognized that such flows would have prac-
tical significance if, as seened likaly, the shock waves that occurred in
neighboring flows were very weak. Wind tunnel research by R. T. Wl:d.l:c:cml:3
at the NASA Langley Research Center and by H. H. Purccya at the Natiomal
Physical Latoratory (U.K.) led to the davelopment of practical "shock-free"
airfoil sections. Subsequent anslytical studies by Garabedian and Korn.s
Nieuwland,® Boerstoel.’ and Sobieczky® established theoratical design
procedures for two-dimensional inviscid flows. More recently, the develop-
ment of sophisticated numerical codes for the analysis of transonic flow
iields has led to the design of both airfoils and wings by numerical
optiniu:ian-g'm The practical success of the above efforts, as documented
by the recent NASA Couference on Advanced Technology R.unrch.u has been
substantial. Further progress, as reportzd here, seems likely. The senior

author recognized that the procedure he was using in the hodograph plane
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implied an analogous procedure in the physical plane, and further, that
this procedure did not seem to be restricted o two-dimensional ﬂm.u'u
This paper reports the su--ess we have had to date in using this idea to
provide shock-free designs in two and three dimensions.

The design procedurs invoksd hare is, in principle, a simple ome.
While there is oo guarantse that a saock-free flow will necesszrily result
from tha procadure, our experience in two-dimensions has been thact if the
hodograph method will work for specifisd flow and airfoil parameters. then
the procedure outlined here will work, toa. Also, it provides neaighboring
shock-free airfoil shapes for fixed lift coefficient with varying Mach

oumbers and varying lift coefficient for fixed Mach numbers, as wall as

providing a multiplicity of closely related shopas that are shock-free at

fixed lift coaefficient and Mach oumber. This wealth of shock-free
two-dimensional designs is of no great surprise; it is, thenm, not surpris-
ing that they are found with minimal computational effort. Two-dimensional
inviscid flow potential airfoil designs require less than a minute of
CYBER 175 CPU time and only a few seconds of CDC 7600 CPU tinma.

For three-dimensional flows our results are less extensive. Also,
while it is clear that the procedure we use rests on a sound mathemacical
foundation in two dimensions, this may not be the case in three dimensions.
Indead, for three-dimensional (that is non-planar and non-axisymmetric)
flows we are probably solving an ill-posed boundary value problem. The
fact that shock-free flows are obtained in the cases studied here are a
consequence of tha pseudo-analytic character of the initial data and the
particular numerical technique used to calculate the flow in the hyperbolic

region.*

*The authors are indebted to Professor A. Jameson of the Courant Institute
for alerting them to this difficulcy.
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We have demonstrated the ability to modify three-dimensional wings
so that, within the context of the numerical algorithm used, shock-free
flows are obtained. We have not yet demoustrated an analogous weelth of
shock-free flows in the three-dimensional case, but see no reasom to
believe that this situation is different there. The practical consequences

of this wealth should prove to be of interest to the aircrafc Mﬂlﬂ"-lb

DESIGN PROCEDURE

The procedurs we use to find shock-free designs assumes that a reliable
cumerical code is available for computing the flow past a given configuratiom,
such as that skeatched in Figure 1. Such codes are available for two- and
three-dimensional inviscid flows. When they are coupled with a reliable
boundary layer code, the design procedure outiined here can be used to
calculate shock-free viscous flow designs. While this would require some
modest iteration, it is certainly possible, both ia practice and in prin-
ciple. With the existence of a reliable analysis algorithm presumed, we
modify this algorithm so that once the flow becomes hyperbolic we alter the
basic equations so that they revert to elliptic behavior. This may be done
in a number of ways, but it should be done in a way that it conserves new,
but fictitious, "mass"” and "momentum" fluxes to a satisfactory degree of

accuracy. We may, for example, change the density's dependence from the

_ ugsual one to one that returns the equations to elliptic form. We might

suppose, for the purpose of illustratiom, that once the equations become
parabolic, i.e., sonic, on sowe surface then at higher velocitiaes the

density will be maintained at its sonic value, giving elliptic equations.
We use a numerical algorithm to compute this fictitious flow past a con-

figuration of interest, chosen perhaps on the basis of previous design




experience. Because the equations are elliptic this will result in a
discretized, pseudo-analytic, description of the velocity, density, and
pressure fields on the embedded parabolic surfaces, and this description
will be consistent with the correct governing equations. This initcial
data on the parabolic surfaces is them used to calculate the correct flow
fiald inside such surfaces. This new flow field may, or may not, contain
shock wvaves. This depends on the choice of the fictitious equatiomns, or
perhaps bettar, fictitious gas, used inside the parabolic surfaces. This
new flow will define a stream surface that is tangect "o, and has the same
curvature as, the stream surface at the intersection of the sonic surface
and the original body. Inside this surface a new body shape is defined by
the stream surface of the new, but now real, flow.

Here, of course, wve must also address the question of whether or not
this initial value problem is well posed. In two dimensions there is o
difficulcty because either of the spatial coordinates may be designated as
the time-like variable. This is pot the case in three dimensions where
only the spatial coordinate aligned with the flow is time-like. Because
shock-free flows are reversible, the domains of dependence and influence
may be interchanged. But neither the aormal (nor the binormal) to the
stream direction can be considered time-like in the three-dimensional
inicial value problem. Thus, it may be ill-posed because data are given
on surfaces that are not in the usual domain of dependenca. If 30, any
computational algorithm will be unstable for the three-dimensional problem.
Further, while such computations can be stabilized by artificial means, the
rasults must be considered suspect until they are verified by ar fadependent
computation. It is this fact that has made us stress that a raliable

analysis algorithm should be the basis for the design computations., For
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two~dimensional (planar and axisymmetric) designs this difficulcy does not
occur because the lateral coordinate can be considered to be the time-like
direction. A simplistic analysis of model problems indicates that varia-
tions in the spanwise direction that are on a scale that is small compared
to the nominal axial (flow direction) distance may amplify; chus the
success of the numerical algorithm here may depend upon its natural filter-
ing of such disturbances. This is not the first time ill-posed problems
have been solved to obtain results of engineering interest; see, for
example, Ref. 15, pp. 448-472.

Fictitious Gas
As mentioned above, modifications are made to the basic equatioms to

ratain their elliptic behavior once the flow has accelerated to sonic speed
and a parabolic surface, with the needed initial data, has been generaced.

The possible modificacions are manifold. We limit our discussion to those

we have used to obtain the results reported here.

16,17

For two-dimensicnal flows we have used Jameson's circle-plane

algoritim for the full potential equation. Thus, in the analysis mode, we

are solving

{M:}x + {”z}; =0
with

plo, = (1 +x-§-iu3(1 - ¢: - ¢:)]1/7-l

where ¢ 1is the velocity potentizl and p the deasity. If we limit our

congideration to fictitious gases for which the demsity is a functiom of

(1a)

(1b)
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tha square of the velocity, viz., p = o(qz). wvhere qz - Uz[t: + 0,21.

then gas laws of the form

*

will insure elliptic behavior; P = 1 gives parabolic behavior and the
fictitious and real gases have the same value of (do/dq),. An alternative
choice, and the one we hava used most extensively here, is P = 0; in
this case Equation (la) becomes Laplace's equation. When the flow would
normally be hyperbolic we now solve Equation (la) with the densicy-
velocity relationship of Equatiom (lc). A fictitious mass flow, which
matches the real mass flux at the sonic surface, is thereby conserved and
the velocity field remains irrotational.

For three-dimensional flows we have used the Ballhaus, Bailaey, Frick
llgorithl.ls as implementad by Mason et ‘1-19 This is a small perturba-
tion calculation and wa adopt the classical conservative formulation here.

Thus we solve, in an equivalent form, the system
-% (y + I.){uz}x‘ﬂ-v,_i-wz =0
uy il 0 (2)
“z = 0,

where the velociry vector is g = a, [(1 + u)i + vi + wk].

A simple modification (2) is to replace {uz}x by -cgn(u){uz}x

for all u. This svstem is elliptic except on the somic surface where

plo, = (l./q)P. P<l, for q> a (1e)

—




u=0., We may think of the first of Equations (2) as being the consequence

i of the small perturbation expansio: for the density, viz.,
: -2- - l - -y - L:—;‘- uz. (3)
j P 2

whereas the ficiitious equation, with u replaced by =|u| for u > 0,

i results from

.L-l.-“+1+_3“2; (4)
P 2
this fictitious gas has the same value for (dp/du), as the real gas,
Equation (3). For three-dimensional design studies, then, we solve Equa-
tions (2) with {uZ}‘ replaced by -sgn(u){u.z}x; this corresponds to

using the densities given by Equations (3) and (4) for u< Q0 and u> 0

respaectively.

Calculacion of the Hyperbolic Flow Field

As described above, we calculate the flow past a body using the correc:
equations when the flow is subsonic and a modified, incorrect, set of equa-
tions when the flow is supersonic. This calculation serves to define somic
surfaces on which the flow fiald calculation is switched from the correct
equations to the modified ones. Outside this surface, presuming the
trailing edge of the wing i3 subsonic, the solution satisfies the correct
equations and the potential at infinity has the correct value for the
circulation. If infinity in the physical plane is not mapped to a finite
part of the computational plane, then there is, in principle, a reed o

correct the doublet and nonlinear contributions; in practice, these con-
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T — T ————

- T e T T ——

tribucions are small and changes in them negligihla. Thus tha flow in the
elliptic, subsonic, domains is fixed and kmown, as is the initial daca wve
newd on the parabolic surfaca.

For two-dimeusional flows the calculation of the correct hyparbolic
behavior is carried out using the method of characteristics. This s done
in a hodograph—-like working plane in which the characteriscics are
orthogonal straight lines. If we take = 8 +v and n = 4 - v whers
8 1is the flow deflection angle and v the Prandtl-Meyer turning angle,

then the velocity potential and stream function satisfy

o = té%”-)v
3 3
, (5)
- k(&=
¢, = KO-,

or equivalently,

dv - g1
3 K

£,n=const

where the + signs refer to £,n = const., respectively. Here
KO = Kiv(@] = (M@ - 1[1Y% @ /0 ().

Values for the velocity potential on the parabolic line, 2z = z*(x), and
the shape of this line are used along with the usual relations between the
spatial coordinates and ¢ and % ¢to find ¥ on the sonic line. This

initial data is then integrated using Equations (5) to determine the locus

Y(x,z2) = 0 wnich passes through the irtersectiion of the soric line with

the btody surface. The values of z for which ¥(x,z2) = 0 determine the
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new body shape. This shape will have the same ilopn. and at least theo-

retically, the sam~- curvature, as the original body at the sonic points.
Thir follows from the observatiom that flow quantities are not changed at
the sonic line; thus the streamwise mcmentum and normal pressure gradient
are unchanged. Consequently ti"° local flow curvature must be the same.
For three-dimensional flows che calculation of the hyperbolic flow
field is carried out by a procedure that marches inward from the sonic
surface by successive surfaces of constant density (isopycnics) for the
full potential equation, or constant axial flow speed, u, for the small

perturbation equation. We limit our discussion to the small perturbation

equations, as all the results reported here derive from them. Preliminary

results using the full potential equation have been cbtained by one of the

authors (N. J. Yu).

We may either write the Equatiouns (2) in the appropriately scaled
form or work with them directly, which we will do here.

We are given an isotach surface z*(x,y), as shown in Figure 2, on
which we know u = u* = const., w = w*(x,y), and v = v*(x,y). We use

the data on this surface, and the surface shape, to calculate

Because this data satisfies Equations (2) we can verify thac

vk = zhyk - zhyk
x Xy y x

which can be used, if needed, to check the comsistemcy of the initial data.

The values giver in Equation (6) can now be used to calculate the =z

(6)
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derivatives of u, w, v on z*(x,y), where u(x,y,z¥) = const., by
usinug

u = [zevh o gk o o] /T
z v x Xy x

.- (Cr + l)u*z;\t‘; - z*y'v; o V‘;]/J (7)

v, [y + l)u*z:v; - H; - z;?;l/J

where J, cthe Jacobian, 23 (u,v,w)/3(x,v,z), 1s

3@ iG> 1)u~z;2 .

When the Jacobian, which is initially negative, vanishes we can no longer

compute the 2z derivative=; this corresponds to the subsequentc formation

of multi-valued solutions, i.e., limit surfaces. If J = 0 occurs before
the calculations pro . A suitable stream surface defined by w(x,y,0),

v(x,y,0), than thay must be rejected.

With cne first of Equations (7) inverted to give (dz/du),, we take a
set increment in u, Au, ¢to form a new isotach surface z*(x,y) + Az*(x,7).

This new shipe, along with the mean value of u between the two surfaces

and the seccnd and third of Equations (7), provides the new values,

w*(x,y) + Aw*(x,y), v*(x,y) + Av*(x,y), of w* and v* on the next

isotach. Thesa values and the shape of the subsequent isotach are then

converted to countinuous functions by one-dimensional cubic splines in the

x and y coordinates. This "onion-peel''-like process is then continued
until z = 0, unless a limit surface intervemes. In the latter event the

solution must be rejected. A more detailed discussion of this procedure

is givem in Ref. 20.

e o




derivatives of u, w, v om 2z*(x,y), where u(x,y,z%) = const., by

asing
u = [:;v: - t;v; - w;l/J
v, e [(y + Lu*zhws - :;\l; + v;]/.I W)
v, = [(y + Lurzhve - u; - z;v;]/:
i where J, cthe Jacobian, 3(u,v,w)/3(x,y,2), Lis

Je(y+ l)u*:;z - :;z - 1.
When the Jacobian, which is initially negative, vanishes we can no longer
compute the 2z d-~“vatives; this corresponds to the subsequent formation
of multi-value solutions, i.e., limit surfaces. If J = 0 occurs before
the “asleulations produce a suitable scream surface defined by w(x,y,0),
v(x,7,0), thea they must be rejected.

With the firsc of Equations (7) izverted to give (dz/du),, we take a
set increment in u, A4u, to form a new isotach surface z*(x,y) + dz*(x,7).
This new shape, along with the mean value of u becween the two surfaces
and the second and third of Equations (7), provides the new valuas,
w*(x,y) + Aw*(x,y), v*(x,y) + Av*(x,y), of w* and v* on the next
isotach. These values and the shape of the subsequent isotach are then
converted to continuous functions by one-dimensional cubic splines in the
x and y coordinates. This "onion-peel''-like process is then continued

! until 2z = 0, unless a limit surface intervenes. In the latter event the

solution must be rejected. A more detailed discussion of this procedure

is given in Ref. 20.




TWO-DIMENSIONAL RESULTS

We have explored, rathar extensively, some of the modifications that
can be made to an existing airfoil, namely an NACA 64A410 airfoil, to
obtain shock-free flow. We will call this the baseline airfoil, as the
airfoil shapes we generate are identical wich this airfoil over that por-
tior wetted by subsonic flow; we need only modify the airfoil over a
limited portiomn of its upper surface to obtain shock-free flows. Further,
this modification is not unique for fixed flight conditions; racher, if
one such shape exists, there will be an infinite family of modifications
of the baseline airfoil that will produce shock-free flow.

With a baseline airfoil sciected, here mainly for iliustrative pur-
poses, we then pick a set of flight conditions for which we wish to find a
modification of the airfoil shape that will result in shock-free flow. We
choose M_ = 0.72 and a, the angl._of fttack. 0.4 DEG. At these condi-
tions inviscid flow calculations for the NACA 64A410 baseline airfoil give
a GL of 0.78 arnd a CD of 0.0064. The design procedure discussed
above results in an airfoil that is 9.3%7 thick and has a (ift coefficient
of 0.703. The original and the design pressure coefficient, sonic lines,
and body shapes are compared in Figura 3a; these results, and all other
"analysis" results were computed using the numerical algorithm of Ref. 16.
Figure 3b compares the pressure coefficients and sonic lines determined by
the design procedure with those computed for the design airfoil shape.

With this shock-free dasign established at M = 0.72 and with cL =
0.70, we now wish to determine the families of shapes that provide shock-
free flow for fixed lift coefficient as the Mach aumber varies, and fixed

Mach number as the lift coefficient varies. This we have dome with P = 0,
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that is, with a conscant density fictitious gas (at the critical valuas).
We have then explored other shapes that will produce the same lifr coeffi-
cient, 0.79, ar a fixad Mach number, for three different Mach num'ers,
by taking P to be -0.5, 0.5, and 1.0. Also, tor P = 0 we huve
determined the maximum !"ach number for which the design procadure will
produce a shock-free airfoil, as a function of lift coefficient. This
Mach number is nearly a linear function of lift coeffirient at larger lift
coefficients. The slope of this variacion is consistent wich that givem by
Bou:u:ocl.zl Preliminary studies aJ-o indicate that for a fixed lifc
coefficient of 0.6-0.7, an 0.12 increase in the maximum Mach oumber
requires about an 0.2 reduction in the thickness for shock-free flow,
wvhen the nominal thickness is about 10Z. This result is less optimistic
than the envelope of the hodograph designs given by Bocrlto¢1,11 who found
that only an 0.1 reduction was required. In our study the generic
family of the airfoil is invariant; we have not yet examined the modifica-
tions required when the baseline airfoil is near the envelope of hodograph
designs. Positive values of P provide less airfoil thicikness reduction,
as the fictitious and real gas densities are more nearly the same. The
range of our airfoil studies is depicted in Figure 4, with shock-free
airfoils being determined for the points indicated. Also showr. in Figure
4 is the maximm Mach number for which a design was found as a function cf
1ift coefficient for P = 0.

The accuracy of the design pr.ceadure was studied at a number of design
pointe by comparing the design's pressure distribution and somic line shape
with those obtained using the ummodified numerical algorithm to analyze the
desigr airfoil shaps. Typical results are shown in Figure 5. The sonic

line shape and initial data on the sonic line are determined in the circle-
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plane; they then are mapped back to the physical plane. The method of
characteristics in the hodograph variables is used to compute the design
pressure coefficient corresponding to the calculated airfoil surfice shape.
The agreement, as shown, is excellent. For designs that approach the Mach
number at which a limit line first penetrates the surface special care must
be taken with the analysis code in order to obtain a converged solution.
These designs have very rapid expansions immediately following the sonic
line. Indeed, as Bo.ratuclzl has noted, the analysis code used with an
optimization scheme will not produce designs of this character.

The shock-free airfofl shapes that are obtained for fixed CL and P,
fixed M_ and P, and fixed M_ and CL at various P's, are shown in
Figures 6-8. One can overlay the results for fixed CL and find quite
similar airfoil shapes that are shock-free over a range of Mach numbers.
Because modifications to the baseline airfoil are requircd only over a
limited portion of the upper surface, and a family of specified changes in
the airfoil curvature is known for each set of flight conditions, a closely
related family of shock-free airfoil shapes can be generated. Thus the
minor modifications, to a limited portion of a wing surface, needed to
produce shock-free flow over a practical range of flight conditioms can

easily be determined.

THREE-D IMENSTONAL RESULTS

Our first design results using the method described above were for two-
dimensional, small perturbation flow past a parabolic arc airfoil. Conse-
quently, we initiated our three-dimensional studies with a rectangular,
unswept wing with an aspect ratio of six and a parabolic arc airfoil. We

utilized the small perturbation approximation, Equations (2), and a parabolic




thickness distributicn; the airfoil was taken to be 6% thick at the center
plane. The flow was calculated using the algoritbhm of Ref. 19, modified to
return the equations to elliptic behavior as described earlier. The initial
data on the eambedded sonic surface was then used to compute the correct flow
in the supersonic domain using the "onicn peel" algorithm of Ref. 20. This
defines new wing surface slopes. The flow past this shock-free design was
then analyzed, using the ummodified numerical algoricthm. Figure 9 compares
the pressure distributions on the original and design wing, at various
lateral positions, for M_ = 0.87. Also shown are the cross sections of the
sonic surfice at the same lataral stations. The only essential differences
in the pressure occur in the supersonic domain, which is consistent with the
design process. The modifications made to the wing slope, shown in Figure
10 for several lateral stations, have eliminated the shock wave.

A subsequent, more realistic, calculation was made for the planform
sketched in Figure 11. The wing section chosem wa~ -n NACA 64A410 pro-
file at the center section and an elliptic thickness distribution. The
leading edge sweep was takan to be 30 DEG, the trailing edge 15 DEG and
the span to chord ratio five. The sonic surface is also depicted in Figure
1ll. Figure 12 compares the pressure coefficiamts on the uppar surface of
the original wing and the wing designed to be shock free. While the reduc~-
tion in drag for this wing is small compared to the induced drag, it is
clear that the wing modifications have essentially eliminated the shock
waves, and, cousequently, the wave drag. More importantly, shock wave
induced boundary layer separation is avoided.

We pause at this point to stress that the above comparison is obtained
by computing the flow past the original wing and the design wing, using the

same numerical algorithm. The process that leads to the new wing shape

oo
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also proviies thr pressure or the wing. Because this pr~ssure, a.i the new
iasign shape, result from a problem that is presumably ill posed, the
rasults were considered suspect until verified by the original numerical
1lgorithm. Our experience with the calculation of the three-dimansiocnal
supersonic flow field is limited. But this limited experience seems to
confirm that reducing the isctach or lateral mesh size to small values gives
results that are indicative of an instability. At this juncture we can only
say that results of engineering interest are obtained in three-dimensional
flows, no doubt because the flows of interest are frequently those whose

behavior is generally smooth and locally analytic.

CONCLUSION

A novel and simple procedure for determining modifications that will
make a baseline configuration shock-free for supercritical flight condirions
has been delineated. For two-dimensional, inviscid flows, shock-free de-
signs are obtained in seconds on a CYBER 175. Families of airfoils that are
shock-frce at fixed, as well as varying, flight conditions are found. The
same procedure has been applied to three-dimensional wings, resulting in
wing modifications that make the wings shock-free when the flow is analyzed
with the numerical algorithm that was modified to become a design tool. It
can also b‘rlpplid to the design of shock-free cascades. A unique feature
of the procedure is that any code that is effective in computing the flow
field may be modified, in various ways, to be a design algorithm if it is
coupled with a method for ralculating the solution in the supersonic
domains for given data on the sonic surfaces. A straightforward marching
technique for such computations is described for three-dimensional flows;

in two dimensions either the marching procedure or the method of
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charactaeristics may be used for tha supersonic domain. The algorithm for
the supersonic domain serves to define the modifications needed in the
configuration to achieve shock-free flow; these modificatiomns will be

limited to that portion of the design shape that are wetted by supersonic
flow.
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atch of shock-free flow past a lifting wing depicting the {
sonic su:face cbtained bty introducing fictitious behavinr

inside this su.face that results in elliptic equations. The
correct flow in this supersonic domain is subsequently calcu-
lated using the initial data on the sonic surface. This

calculation provides the wing geometry modifications needed ‘
to obtain shocx~free flow.

Skench of two neighboring isotach surfaces used in the calcu-
lation of the supersonic domain for Equations (2).

Compariscn of the pressure coefficients and sonic lines for
the baseline NACA 54A410 and the shock-free airfoil obtained !
from it by the direct design procedure.

Parameter space explored for the shock-free airfoils that can i

be obtained when the baseline configuration is an NACA 64A410
airfoil.

Comparison of the pressure coefficient and the sonic line
obtained by the design calculation that modifies the airfoil
shape with tho<e obtained by computing the flow past the
modified airfoil with the numerical algorithm of Ref. 16.

Shock-free airfoil shapes for fixed lLift coefficient and vary-
ing Mach number. The fictitious gau las 4 constant densiiy in

the supersonic domain. The vertical scale is magnified five q
times and the baseline airfoil is an NACA 64A«10. |
Shock-free airfoil shapes for fixed Mach number and varying

lift coefficient. The fictitious gas has a constant density in

the supersonic domain. The vertical scale is magnified five

times and the baseline airfoil is an NACA 64A410.

Shock-free airfoils obtained at the same flight couditions by
varying the exponent of Equation (lc) and thus changing the
density's dependence on flow speed. The vertical scale is mag-
nified five times and the baseline airfoil is an NACA 64A410.

Sonic surface for the shock-free rectangular wing obtained by
modifying a wing with a parabolic arc airfoil section, and the
pressure coefficients on the original and modified wing as
calculated by the numerical algorithm of Raf. 19. The thickness
distribution of the baseline wing is parabolic.

Changes required in the surface slope at various lateral sta-

tions to provide shock-free flow over the rectangular wing of
Figure 9.

Sonic surface on the shock-free swept wing used that corresponds
to the design pressure coefficients shown in Figure 12.
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Figure 12.

Comparison of the computad pressure coefficient on a swept wing,
with an NACA 64A410 center section profile and an elliptic
thickness distribution, with the prersure coefficieut obta:ned
by computing the flow past the modified wing using the same
numerical algorithm. The lezding edge swaep is 30 DES and the
trailing ed3e sweep .5 DEG.
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